Untangling long branches: identifying conflicting phylogenetic signals using spectral analysis, neighbor-net, and consensus networks.
نویسندگان
چکیده
Long-branch attraction is a well-known source of systematic error that can mislead phylogenetic methods; it is frequently invoked post hoc, upon recovering a different tree from the one expected based on prior evidence. We demonstrate that methods that do not force the data onto a single tree, such as spectral analysis, Neighbor-Net, and consensus networks, can be used to detect conflicting signals within the data, including those caused by long-branch attraction. We illustrate this approach using a set of taxa from three unambiguously monophyletic families within the Pelecaniformes: the darters, the cormorants and shags, and the gannets and boobies. These three families are universally acknowledged as forming a monophyletic group, but the relationship between the families remains contentious. Using sequence data from three mitochondrial genes (12S, ATPase 6, and ATPase 8) we demonstrate that the relationship between these three families is difficult to resolve because they are separated by a short internal branch and there are conflicting signals due to long-branch attraction, which are confounded with nonhomogeneous sequence evolution across the different genes. Spectral analysis, Neighbor-Net, and consensus networks reveal conflicting signals regarding the placement of one of the darters, with support found for darter monophyly, but also support for a conflicting grouping with the outgroup, pelicans. Furthermore, parsimony and maximum-likelihood analyses produced different trees, with one of the two most parsimonious trees not supporting the monophyly of the darters. Monte Carlo simulations, however, were not sensitive enough to reveal long-branch attraction unless the branches are longer than those actually observed. These results indicate that spectral analysis, Neighbor-Net, and consensus networks offer a powerful approach to detecting and understanding the source of conflicting signals within phylogenetic data.
منابع مشابه
Stock Selection as a Problem in Phylogenetics—Evidence from the ASX
We report the results of fifteen sets of portfolio selection simulations using stocks in the ASX200 index for the period May 2000 to December 2013. We investigated five portfolio selection methods, random selection, selection within industrial groups, and three based on neighbor-Net phylogenetic networks. We report that using random, industrial groups, or neighbor-Net phylogenetic networks alon...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملNeighbor-net: an agglomerative method for the construction of phylogenetic networks.
We present Neighbor-Net, a distance based method for constructing phylogenetic networks that is based on the Neighbor-Joining (NJ) algorithm of Saitou and Nei. Neighbor-Net provides a snapshot of the data that can guide more detailed analysis. Unlike split decomposition, Neighbor-Net scales well and can quickly produce detailed and informative networks for several hundred taxa. We illustrate th...
متن کاملPhylogenetic Analysis of Three Long Non-coding RNA Genes: AK082072, AK043754 and AK082467
Now, it is clear that protein is just one of the most functional products produced by the eukaryotic genome. Indeed, a major part of the human genome is transcribed to non-coding sequences than to the coding sequence of the protein. In this study, we selected three long non-coding RNAs namely AK082072, AK043754 and AK082467 which show brain expression and local region conservation among vertebr...
متن کاملA Nuclear Ribosomal DNA Phylogeny of Acer Inferred with Maximum Likelihood, Splits Graphs, and Motif Analysis of 606 Sequences
The multi-copy internal transcribed spacer (ITS) region of nuclear ribosomal DNA is widely used to infer phylogenetic relationships among closely related taxa. Here we use maximum likelihood (ML) and splits graph analyses to extract phylogenetic information from approximately 600 mostly cloned ITS sequences, representing 81 species and subspecies of Acer, and both species of its sister Dipteron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systematic biology
دوره 54 4 شماره
صفحات -
تاریخ انتشار 2005